2003 Vol. 5, No. 3 263-264

Synthesis of Highly Substituted Cyclopentenones via the [4 + 1]Cycloaddition of Nucleophilic Carbenes and Vinyl Ketenes

James H. Rigby* and Zhenggiang Wang

Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489 jhr@chem.wayne.edu

Received October 31, 2002

ABSTRACT

$$R^1 \downarrow C^{zO}$$
 + X $R^1 \downarrow X$

Vinyl ketenes have been shown to undergo [4 + 1] cycloaddition with a variety of nucleophilic carbenes to deliver highly substituted cyclopentenones as products.

Nucleophilic carbenes have been shown to react readily as 1,1-dipole equivalents with vinyl isocyanates to afford a wide range of substituted hydroindolone and pyrrolinone products (Scheme 1). $^{1-3}$ On the basis of this precedent, one can easily

envision other electrophilic vinyl heterocumulenes behaving in a similar fashion. For example, the cycloaddition of nucleophilic carbenes with vinyl ketenes is particularly intriguing in this regard because carbocyclic products

exhibiting a substantial level of substitution would result (Scheme 2).

Scheme 2

$$R_0 Si \downarrow C^{2O}$$
 $R_1 \downarrow X$
 $X \downarrow X$

The cycloaddition chemistry of (trialkylsilyl)vinyl ketenes⁴ has been extensively investigated by Danheiser and coworkers, who have demonstrated that these functions are willing participants in [2 + 2], [4 + 2], and [4 + 1]cycloaddition processes, the latter employing carbene equivalents such as sulfur ylides and diazomethane as 1,1-dipoles.

^{(1) (}a) Rigby, J. H. Synlett 2000, 1. (b) Rigby, J. H.; Laurent, S. J. Org. Chem. 1999, 64, 1766. (c) Rigby, J. H.; Cavezza, A.; Heeg, M. J. J. Am. Chem. Soc. 1998, 120, 3664.

⁽²⁾ Rigby, J. H.; Wang, Z. Org. Lett. 2002, 4, 4289-4291.

⁽³⁾ For leading references to other applications of nucleophilic carbenes, see: (a) Pole, D. L.; Sharma, P. K.; Warkentin, J. Can. J. Chem. 1996, 74, 1335. (b) Couture, P.; Terlouw, J. K.; Warkentin, J. J. Am. Chem. Soc. 1996, 118, 4214. (c) Arduengo, A. J., III; Dias, H. V. R.; Dixon, D. A.; Harlow, R. L.; Klooster, W. T.; Koetzle, T. F. J. Am. Chem. Soc. 1994, 116, 6812. (d) Moss, R. A. Acc. Chem. Res. 1989, 22, 15.

⁽⁴⁾ For the preparation of these species, see: Loebach, J. L.; Bennett, Y. M.; Danheiser, R. L. J. Org. Chem. 1998, 63, 8380.

^{(5) (}a) Danheiser, R. L.; Brisbois, R. G.; Kowalczyk, J. J.; Miller, R. F. J. Am. Chem. Soc. 1990, 112, 3093. (b) Danheiser, R. L.; Gee, S. K.; Sard, H. J. Am. Chem. Soc. 1982, 104, 7670.

⁽⁶⁾ Bennett, D. M.; Okamoto, I.; Danheiser, R. L. Org. Lett. 1999, 1,

^{(7) (}a) Dalton, A. M.; Zhang, Y.; Davie, C. P.; Danheiser, R. L. Org. Lett. 2002, 4, 2465. (b) Loebach, J. L.; Bennett, D. M.; Danheiser, R. L. J. Am. Chem. Soc. 1998, 120, 9690.

We now disclose that nucleophilic carbenes can indeed undergo efficient [4+1] cycloadditions with various (trialkylsilyl)vinyl ketenes to afford highly substituted cyclopentenones.⁸ The reaction of vinyl ketene **1** with bis-(propylthio)oxadiazoline (**2**)^{1b,10} to provide adduct **3** is typical (Scheme 3).

Other examples of this cycloaddition protocol are compiled in Table 1. This ring-forming process has been shown to be

Table 1. Reactions of Vinyl Ketenes with Nucleophilic Carbenes

$$R^1 \longrightarrow C^{>0}$$
 + $:X$ \longrightarrow $R^1 \longrightarrow X$

Entry	R1	R2	R3	х	Yield (%)
1	TMS	Ph	н	OMe	63 ^{a,b}
2	TMS	Ph	Н	SPr	88ª,b
3	TIPS	Me	Me	OMe	80 ^{a.b}
4	TIPS	-(CH ₂) ₄ -		OMe	82ª.b
5	TIPS	-(CH ₂) ₄ - -(CH ₂) ₄ -		SPr	85 ^{a,b}
6	TMS	Ph	н	PhN	55 ^{b,c}
				PhN —	
_				PhN_	
7	TIPS	Me	Н	PhN	76 ^{b,c}
				FIIIN.	
8	TIPS	н	Me	PhN_	71 ^{b,c}
				PhN —	

 a A solution of vinylketene (ca. 0.05 M) and excess oxadiazoline (ca. 0.1–0.2 M) in benzene (X = SPr) or xylene (X = OMe) was refluxed for 1–2 h. b From ref 9. c Reactions run in refluxing xylene (ca. 0.05 M) for 1–2 h.

general for oxygen-, nitrogen-, and sulfur-based nucleophilic carbenes. The requisite bis(alkoxy)- and bis(alkylthio)-carbenes were accessed in the usual manner by thermolysis

of the corresponding, readily available oxadiazolines. ^{1a,10,11} The N-heterocyclic carbenes, in contrast, were generated by thermolysis of the 2-trichloromethyl-1,3-imidazolidine (4).^{2,12}

In most instances the corresponding α -ketoacetal, thioacetal, or aminal was the primary product of these reactions (entries 1–8). However, in a couple of instances more highly unsaturated products were formed. Thus, when vinyl ketenes $\mathbf{1}^9$ and $\mathbf{6}^9$ were heated with 2-trichloromethyl-1,3-imidazolidine (4), 12 methylene-cyclopentenones $\mathbf{5}^9$ and $\mathbf{7}^9$ were produced in good to very good yields (Scheme 4). Related

ring-opened products have been observed previously with N-heterocyclic carbenes in their reactions with vinyl isocyanates.² However, the different behavior of structurally related substrates 1 (Scheme 4) and entries 7 and 8 (Table 1) must be attributable to the combination of the extended conjugation available in product 5 and the steric influence of the C3 methyl group in ketene 1 that may help to destabilize the initially formed aminal ring. Only compound 5 satisfies both of these conditions, hence its divergent structure.

In summary, nucleophilic carbenes have been shown to participate in efficient [4+1] cycloaddition reactions with (trialkylsilyl)vinyl ketenes to deliver highly substituted cyclopentenones. These results nicely complement the previous [4+1] cycloadditions of these species with ylides and diazoalkanes and provide for a new entry into cyclopentenone targets.

Acknowledgment. The authors thank the National Science Foundation for their generous support of this research.

Supporting Information Available: General procedure and experimental data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0272141

264 Org. Lett., Vol. 5, No. 3, 2003

⁽⁸⁾ One example of a nucleophilic carbene adding to a bisketene has been reported: Colomvakos, J. D.; Egle, I.; Ma, J.; Pole, D. L.; Tidwell, T. T.; Warkentin, J. J. Org. Chem. 1996, 61, 9522.

⁽⁹⁾ All new compounds exhibit spectral (¹HNMR, ¹³CNMR, IR) and analytical (HRMS and/or elemental analysis) data fully consistent with the assigned structures.

⁽¹⁰⁾ Rigby, J. H.; Laurent, S.; Dong, W.; Danca, M. D. *Tetrahedron* **2000**, *56*, 10101.

⁽¹¹⁾ Pole, D. L.; Warkentin, J. Liebigs Ann. Chem. 1995, 1907.

⁽¹²⁾ Wanzlick, H. W.; Schrikora, E. Chem. Ber. 1961, 94, 2389.